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Abstract

The most commonly used p-way partitioning method is recursive bisection. It first

"optimally" divides the graph (mesh) into two equal sized pieces and then recursively

divides the two pieces. We show that, due to the greedy nature of and the lack of global

information, recursive bisection, in the worst case, may produce a partition that is very

far away from the optimal one. Our negative result is complemented by two positive

ones: First we show that for some important classes of graphs that occur in practical

applications, such as well shaped finite element and finite difference meshes, recursive

bisection is normally within a constant factor of the optimal one. Secondly, we show

that if the balanced condition is relaxed so that each block in the partition is bounded

by (l+e)n/p, then there exists an approximately balanced recursive partitioning scheme

that finds a partition whose cost is within an O(logp) factor of the cost of the optimal

p-way partition.

Keywords: Communication cost, data and computation mapping on parallel machines,

load balancing, mesh partitioning, parallel" processing, recursive bisection, scalable parallel

algorithms, well-shaped finite element and difference meshes.

1 Introduction

Graph partitioning is one of the most important problems for solving large-scale scientific

computing problems on a massively parallel machine. A key subroutine in such parallel
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processing is to map irregular and unstructured computations onto a distributed memory

parallel machine to achieve load balance and to reduce communication cost[2, 27, 6, 28, 3'2].

In particular, to process a computational task, which is represented by a graph G whose

edges give the communication pattern and whose nodes represent the computations, on a

parallel machine of p processors, we need to decompose G into p subgraphs G1, ..., Gp and

assign the computation of each subgraph to a processor. To achieve "optimal" speed-up,

ideally, we need a p-way partition (see next section for a formal definition) such that IG_I =

n/p and the communication cost is minimized, where the communication cost is modeled

by the total number (or weights) of edges whose endp0ints are in different components.

Thus, the partitioning problem has applications in both direct and iterative methods for

sparse linear and non-linear systems [5, 6, 13, 14, 12, 15, 20, 21, 22, 24, 27]. It is also

an important subproblem in run-time and compiler-time optimization for high performance

parallel processing [4, 6] and for VLSI layout [18].

The most commonly used approach for p-way partitioning is to recursively bisect the

graph 1, i.e., first optimally divide the graph (mesh) into two equal sized pieces and then

recursively divide the two pieces. Some extended heuristics have been proposed that apply

quadsectioning or octsectioning in place of bisecting [16]. Preliminary experimental results

seems to indicate that quadsectioning and octsectioning, though more expensive than bi-

Secting, find better p-way partitions. Little is known, however, about how good indeed is

recursive bisection and whether more global optimization schemes should be sought.

In this paper, we show that, due to the greedy nature of and the lack of global infor-

mation, recursive bisection may, in the worst case, produce a partition that is very far away

from being optimal. In other words, optimal reeursive bisection may not lead to a good

p-way partition. Our results hold even for sparse graphs and more structured graphs such as

planar graphs and geometric graphs [22]. The negative result also extends to quadsectiohing

and octsectioning.

On the optimistic side, our negative result is complemented by two positive results.

First, we show that for some important classes of graphs that occur in practical ap-

plications, such as well shaped finite element and finite difference meshes [3, 7, 22, 23, 26],

recursive bisection is within a constant factor of the optimal one in the expected case. In

particular, it follows from a result of [22] that recursive bisection finds a p-way partition of

cost O(pl/dn 1-1/d) for well shaped meshes embedded in d dimensions.

Secondly, we show that if we relax the balance condition to be that each block in the

partition is bounded by (1 + e)n/p, then there exists an approximately balanced recursive

partitioning algorithm (see Section 6) that finds a partition whose cost is within an O(log p)

factor of the cost of the optimal p-way partition. Our result implies that it may not be a

good idea to insist upon the perfect bisection condition at each step of the recursive bisection

scheme.

1When p is not a power of 2, some simple variant of recursive bisection is used.
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Section2 introduces the definitions and notations that will be used. Section3 gives a
densegraph and a sparsegraphfor whom optimal 4-way partition hascost 12and recursive
bisectionhas cost Ft(n2) and Ft(n), respectively. Section4 givesa tight bound of ®(n2/p2)
and O(n/p), respectivelyfor densegraphsand sparsegraphs,on the approximation ratio of
recursivebisection. Section5 showsthat for well-shapedmeshesin d dimensions, recursive

bisection always finds a p-way partition of cost O(pl/dnl-1/d). Section 6 introduces the notion

of approximately-balanced p-way partition and gives a recursive partitioning algorithm that

is within an O(logp) factor of the cost of the optimal p-way partition.

2 Definitions

A bisection of a graph G is a division of its vertex set into two subsets A and B of exactly

equal sizes (we assume that the graph has even number of vertices). The cost of a bisection

is the number of edges one of whose endpoint is in A and another is in B. A p-way partition

of a graph G is a division of its vertex set into p subsets each of size n/p. The cost of a

p-way partition is the number of edges whose endpoints are in different subsets.

When p is a power of 2, a p-way partition can be found by recursively applying bisection.

Algorithm (Recursive Bisection)

Input: (a graph G of n vertices and an integer p, Assume K = n/p).

Output: (a p-way partition of G).

1. Find an "optimal" bisection G _ and G" of G;

2. If ]G' I > K then

• Recursive Bisection(G');

• Recursive Bisection(G");

3. Return the subgraphs G1, ..., Gp so obtained;

Note that the problem of finding an optimal bisection itself is NP-hard [9]. Recursive

Bisection as given above is a template of practical implementations where Step 1 is replaced

by the best available bisection algorithm. Our results can be extended to the case when Step

1 is implemented as an approximately optimal bisection algorithm.

For a 1/2 < 5 < 1, a 5-bisection (or a 5-edge-separator) is a partition of a graph G

into two subgraphs G1 and G2 such that both ]Gll < 51G] and IG2[ _< 51GI. The cost of a

5-bisection is the number of edges between G1 and G2. So, a bisection can be viewed as a

more restricted set of edge-separators where the splitting ratio is exactly 1/2.



We distinguish two classes of graphs: dense graphs and sparse graphs. A dense graph

may have O(n2)-edges and while a sparse graph has only O(n) edges. We can further restrict

that each vertex in a sparse graph has a bounded degree. As shown in [30], most well shaped

finite-element meshes in three dimensions are sparse.

A p-way partition algorithm has approximation ratio a : a >__1, if for each graph G,

it finds a p-way partition of cost at most a times the cost of an optimal p-way partition.

Associated with recursive bisection is a tree, called the.partition tree. Notice that the height

of the partition tree is log p.

3 4-Way Partition

We first consider a 4-way partition and show that there exist graphs that admit a constant

costed 4-way partition, but on which the recursive bisection produces a partition of cost

Y/(n 2) in the dense case and _(n) in the sparse case.

Figure 1: An example of 4-way partition where the optimal cost is 12 and recursive bisection

has cost O(n 2) in the dense case and O(n) in the sparse case.

The outlook of our graphs is shown in Figure 1. It is a graph of n nodes (assuming n

is a power of 2), where A_ has (1/8 + e_)n nodes and B, has (1/8 - c,)n nodes, where ¢,'s

(1 < i < 4) satisfy the following conditions.

i. -1/8 < ei< 1/8 and ei# O;

2. el -b e2 + e3 + e4 -----O; and

3. There are no i,j E {1,2,3,4} such that e_ + ej = 0.

It is not hard to see that such ei's exist (e.g., choose el, e2, e3 at random and choose e4

so that condition 2 holds. Then with high probability, condition 3 holds as well).

In the dense case, we simply let A_ and Bi be cliques; while in the sparse case, we choose

Ai and B_ to be sparse expanders. All balanced edge-separators of a clique of m nodes have
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cost f}(m 2) and all balanced edge-separators of a sparse expander of m nodes have cost

f_(n). One way to construct an expander is to choose a random bounded degree graph, and

it follows from a result of Erd6s, Graham, Szemer_di that all balanced edge-separators of

almost all such linear sized graphs have cost f}(n) [8].

The optimal 4-way partition is the decomposition of the graph into A_ U B_, 1 < i < 4.

The total cut size is clearly 12. In 'contrast, the recursive bisection decomposes the graph

into A1 U A2 O A3 O A4 and B1 t2 B2 U B3 O B4. But then, because of condition 3, at least

one block of A1 U A2 U A3 U A4 (B1 U B2 U B3 U B4) will: be divided two pieces whose sizes

are of constant fraction of the original block in the next level of recursive bisection. Because

Ai's and B_'s are cliques in the dense case and expanders in the sparse case, this dividing

phase will introduce a cost of fl(n 2) in the dense case and fl(n) in the sparse case to the

final partition. Hence the cost of the 4-way partition of recursive bisection is at least _(n 2)

in the dense case and _(n) in the sparse case.

4 p-Way Partitions

The 4-way partition example can be used to construct a tight lower bound on the approxi-

mation ratio of recursive bisection. Let us first consider the example graph in Figure 2. It

is an illustration of a p = 64-way partition.

@wmmlm@@
ml @@

mm@lwl@@
@1 B@ ml @@
iwll @@@

m@ mm
mmmBll

Figure 2: An example of p-way partition where optimal cost is 12 and recursive bisection

cost is ®(n2/p 2) in the dense case and ®(n/p) in the sparse case.

The graph contains 60 disconnected blocks of equal size (n/p) and a graph from the

last section of size 4n/p. Clearly, the optimal partition has cost 12, which is the cost of

decomposing the subgraph from the last section.



Onceagain, wehaveboth denseand sparsecases.In the first logp - 2 levels, recursive

bisection simply decomposes the graph into blocks of four each. The cost so far is zero.

Therefore, the subgraph from the last section stays as one of the blocks. Then, it becomes

clear that recursive bisection yields a partition of cost of O(n2/p 2) in the dense case and

O(n/p) in the sparse case.

Our next example is given in Figure 3, which is graph of 16 copies of the graph from

the last section.

Figure 3: An example of p-way partition where the optimal cost is p and recursive bisection

cost is O(n2/p) in the dense case and @(n) in the sparse case.

Notice that in this case, the optimal partition (into p = 64 pieces) has cost 3p, while the

partition of recursive bisection has cost O(n2/p) in the dense case and ®(n) in the sparse

ca_e.

Interestingly, in both examples, the approximation ratio of the recursive bisection is

®(n2/p 2) in the dense case and ®(n/p) in the sparse case. Does recursive bisection always

achieve approximation ratio no worse than O(n2/p 2) and O(n/p), respectively? We now

show that the answer is "yes".

Lemma 4.1 Recursive bisection has worst case approximation ratio of O(n2/p 2) in the dense

case and ®(n/p) in the sparse case for p-way partitions.

Proof: We just give the proof for the sparse case. The proof for the dense case is similar.

The cost of the p-way partition of recursive bisection is bounded from above by the total

number of edges. Hence, by our assumption, it is O(n).

Thus, if the cost of the optimal p-way partition is gl(p), then recursive bisection clearly

has approximation ratio O(n/p).



Now, suppose the cost Of the optimal p-way partition is k < p. Let C1, C2, ..., Cp be

the blocks in such an optimal partition. So the number of blocks that is connected to some

other blocks, called connecting blocks, is at most k. l_ecursive bisection has zero cost except

when the subgraph containing those connecting blocks. So, it generates a p-way partition of

cost at most O(kn/p). []

5 Graphs with a Family of Small Edge Bisectors

Many graphs in practical applications have small separators [22], i.e., they are graphs that

have the property that every subgraph of then of m vertices has an f(m)-bisector, for a

sub:linear function f. We call such a property the family of f(m)-bisection property. How

good is recursive bisection?

Figure 4 illustrates the partition tree of a p-way partition given by recursive bisection

and the upper bound on the cost of each node.

f(ml4)_ _ _ /_f(m/4)

f(2m/p) f(2m/p)

I r_ m m rn m n D m m m m il m m]

Figure 4: Partition with small edge bisectors

The next lemma follows Immediately from Figure 4.

Lemma 5.1 If G has the property that every subgraph of G of m vertices has an f(m)-

bisector, then the p-way partition generated by recursive bisection has cost

logp-1

2if(n� 2i)
i=0

The condition of family of f(m)-bisection property can be relaxed to the following

condition of family of f(m)-separator property: every subgraph of G of m vertices has an

f(m)-edge separator whose removal divide the graph into two disconnected subgraphs G1

and G2, such that max(]Gll, ]G21) < _n, for some constant _. We say such an edge separator

_-splitts G. Using an argument due to Lipton and Tarjan [19] and Gilbert [12], we can show
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that if a graph has a family of f(m)-separators, then it has a family of o(f(m))-bisectors.

Here is a list of graphs that have a family of small separators (and hence bisectors).

• Planar graphs [19] have a family of O(xffn-)-separators.

• Bounded genus graphs [10] have a family of O( g_/'fr_)-separators, where g is the

genus.

• Bounded minor graphs [1] have a family of O(h!:hv/-r_)-separators, where h is the

size of the largest minor clique.

• Well shaped meshes [22] have a family of O(ml-1/d)-separators, where d is the

dimension of the space in which the mesh is embedded.

• k-nearest neighbor graphs [22] have a family of O(kl/dml-_/d)-separators.

The following lemma is a simple consequence of Lemma 5.1,

Lemma 5.2 If f(m) = m 1-1/d, then the p-way partition generated by recursive bisection

has cost O(pl/dnl-1/d).

Proof: The cost of the p-way partition is bounded from above by

logp-1

E 2'(nl2_) _-_/d
i=O

log p- 1

= nl-1/d( _ 2 i/d)
i=l

= O(plldnl-ll d)

[]

It follows from [30] that most well-shaped meshes (in d-dimensions) in applications have

no p-way partition of size o(pl/dnl-1/d). So the p-way partition of recursive bisection is

optimal (up to a constant factor).

We can extend the results of Sections 3 and 4 to graphs discussed in this section. In

particular,

Theorem 5.3 Recursive bisection has worst case approximation ratio of O(_/-_) for planar

graphs and O((n/p) _-_/d) for well-shaped meshes in d dimensions.



6 Approximately Balanced p-Way Partition

Note that even though one can use general edge separators (not necessarily bisection, [11,

19, 22]) or use minimum quotient separators of [17] at each level of a recursive partitioning

algorithm, there is no guarantee on the approximation ratio as long as the final partition

is required to be a (perfectly balanced) p-way partition. All of the results in the previous

sections generalize.

The question now becomes: can we trade the balanced condition for a better approxi-

mation ratio of the recursive partitioning scheme?

Let _ >_ 1 be a real number. A (fl, p)-way partition of a graph G is a decomposition

of G into G1, ..., Gp such that IG_I <_ _IGI/p, for all 1 _< i < p. Thus, p-way partition is a

(1,p)-way partition. The cost of a (fl,p)-way partition is the number of edges of G whose

two endpoints are not in the same subgraph.

Recall that a 5-bisection, 1/2 < 5 < 1, is a partition of a graph G into two subgraphs

G1 and G2 such that both IG_] < 51G I and IG21 < 51G ]. The cost of a 6-bisection is the

number of edges between G1 and G2.

We first show that the following standard recursive partitioning scheme finds a (2, p)-way

partition with cost at most O(log p) times the cost of the optimal p-way partition.

Algorithm (Recursive Partitioning)

Input: (a graph G of n vertices and an integer p).

Output: (a (2,p)-way partition of G).

1. Let K = n/p;

2. Let G1, ..., Gh be the h subgraphs obtained from running the subroutine

Recursive Cutting(G,K) below;

3. If h _< p, then return (G1, ..., Gh) else repeatedly merge the smallest two

subgraphs until p subgraphs remain.

Subroutine (Recursive Cutting(G, K) )

1. Let s = ]GI/K;

2. Find an optimal (1/2 + 1/s)-bisection G' and G" of G;

3. If ]G'] > 2K then Recursive Cutting(G',K);

4. If ]G"] > 2K then Recursive Cutting(G", K);

9



We will use the following simple lemma to prove the Theorem 6.2 below.

Lemma 6.1 Suppose X = {xl, ..., x,,} is a set of positive real numbers such that 0 <_ x_ <_ 1.

Then X can be divided into two subsets X1 and X2 such that IE_xl x - Eyex2 Y l <- 1.

Proof." We use the greedy approach: First, we put all elements from X in a queue and

maintain two sets that are initially empty; secondly, assign the largest element from the

queue to the set with smaller sum, and delete the element from the queue, until the queue

is empty. Clearly, the sums of the two sets so constructed differ at most by one. []

Theorem 6.2 Let G be a graph and p be a positive integer. If the cost of the optimal p-way

partition is C, then Recursive Partitioning finds a (2,p)-way partition of cost O(C log p).

Proofi The basic idea of the proof is to argue that the cost induced at each level of the

partitioning tree is at most C. Because the partitioning tree has O(log p) levels, the theorem

then follows.

Clearly, the partition associated with the root of the partitioning tree has cost at most

C. This can be shown by the following argument, more complex than needed, but we will

use it to bound the cost of other levels.

Let B1,..., Bp be the subgraphs in an optimal p-way partition of G. After removing all

the inter-block edges, we can group B1,..., Bp into two subsets of equal size. This shows that

G has a (1/2 + 1/p)-bisection, in fact a perfect bisection, of size at most C.

Note that [Bil = K = n/p. Now, we look at the ith level of the partitioning tree, and

we show that there exists an approximately balanced bisection for each node at level i so

that the total cost is at most C. Because Recursive Partitioning uses optimal approximately

balanced bisection for each node, the total cost at level i can only be smaller, and hence is

bounded by C.

Implicitly, B1, ..., Bp may be decomposed into pieces in the previous i - 1 levels. So,

each node of the partitioning tree has a subgraph that have some subsets of these pieces of

B_'s. Note that the size of those pieces is at most K. Once again, image that we delete all

the active inter-block edges at level i. The cost of these edges in total is at most C. Now,

each node at level i contains some subset of these pieces of B_'s, each of which has size at

most K.

The partitioning problem of each node can be viewed as a bin-packing or a two processor

job scheduling problem, i.e., we can apply Lemma 6.1 to divide the pieces of each node into

two groups. By Lemma 6.1, if the subgraph at a node at level i has size sK, then the larger

group has size at most sK/2 + g. Hence the grouping gives a (1/2 + 1/s)-bisection.

t0



Note that after deleting the inter-block edges,wedid not removeany other edges,and
hencethe cost at level i is at most C. D

In conjunctions with the result in [17], we have the following corollary.

Corollary 6.3 There is a polynomial time algorithm that finds a (2, p)-way partition of cost

O(C log n log p), where C is the cost of the optimal p-way partition.

If we choose the K = en/p in Step 1 of Recursive Partitioning, then we have the following

strengthened result.

Theorem 6.4 Let G be a graph and p be a positive integer. If the cost of the optimal p-way

partition is C, then Recursive Partitioning finds a (1 + e,p)-way partition of cost O( C log p).

Also, there exists a polynomial time algorithm that finds a (1 + e,p)-way partition of cost

O(C log n log p).

7 Final Remarks

Our results of Sections 3 and 4 can be extended to the case when recursive quadsectioning

or octsectioning is used. However, it gives some theoretical evidence to the experimental

claim that recursive quadsectioning and octsectioning usually find a better p-way partition.

The results in Section 5 are mainly observational and follow quite directly from the previous

separator results [1, 10, 19, 22]. These results give an absolute upper bound on the cut-size

of p-way partition. They show that the ratio of cut-size to the graph size is O((p/n) 1/d) < 1.

So the ratio of computations to communication in processing well-shaped meshes is reason-

ably balanced as p and especially n increase. This demonstrates that the partitioning based

parallel algorithms are scalable. The results of Section 6 gives a theoretical justification to

the recursive approach taken in [27, 6, 11, 22, 30] and many similar heuristics currently im-

plemented. We expect to see these ideas extended for better, perhaps more global, schemes,

for approximating p-way partitioning.

Acknowledgement: We would like to thank David Bailey and Jim l_uppert for their careful

proof-reading of the draft and helpful comments.
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